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Poisson Point Processes, Cascades, and 
Random Coverings of R" 
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The generalized random energy model (GREM) is formulated in terms of 
hierarchies of Poisson point processes. This allows one to relate the high- 
temperature region with a random covering of R ~. 
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1. I N T R O D U C T I O N  

Random covering problems arise in several contexts. The main idea is to 
find the conditions for covering of a given set by smaller ones of fixed or 
variable size. An interesting problem is the study of the random variable 
representing the minimal number of sets necessary to cover. In the case of 
the noncomplete covering, another question concerns the properties of the 
set still uncovered. 

First introduced by Dvoretzky, (6) the problem has been solved for the 
case of covering of the circle in refs. 9, 15, and 18, and in refs. 14 and 19 
for the real line. In the case of a compact set, a very remarkable result is 
given in ref. 11 using potential theory. A recent result of Janson (1~ 
generalizes the covering in two (and higher) dimensions; that work dis- 
cusses the asymptotic distribution of the average number of covering sets. 

In the physics literature, the covering of the real line by Poisson- 
distributed intervals is first encountered in ref. 1, where one-dimensional 
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percolation models are studied using rigorous renormalization group 
methods. In particular, the absence of percolation is related to the covering 
of the line by given finite intervals called "dissociated" (see ref. 1 for 
details). On the other hand, an interpretation of the phase transition of the 
random energy model (REM) as the passage from a covering to a non- 
covering regime of the real line by Poisson-distributed intervals has been 
given recently by Koukiou. (~4) In this case, the main idea is to interpret the 
"Boltzmann factors," in terms of which the partition function is written, as 
the lengths of the covering sets. 

The purpose of this note is to pursue this work in the case of the 
generalized random energy model (GREM). Our motivation stems from 
the fact that the formulation of this model via Poisson point hierarchies 
allows one to discuss the covering in several dimensions. This is given in 
Section 2. For the convenience of the reader we recall in Section 3 some 
results of ref. 14 and we interpret the phase transitions of the GREM with 
n hierarchies as a random covering of R ~. 

2. THE G R E M  AS POISSON C A S C A D E S  

For the study of spin-glass problems, two simplified models--the 
random energy model (REM) and the generalized random energy model 
(GREM)--have  been introduced by Derrida and extensively studied in 
different contexts. (4'5/ In the case of the REM, one has a system of inde- 
pendent identically distributed random variables E i - - the  energy levels-- 
and the partition function is written as the statistical sum over 2 N energy 
levels: 

2 N 

Z(fl)= ~ exp(--flEi) 

(fl denotes the inverse temperature). 
For  the GREM, correlations between the energy levels are introduced 

in terms of hierarchies. More precisely, the 2 x configurations are grouped 
according to a hierarchy of n levels as follows. For  any n EN and N ~ N ,  
let ~,.>~1 and ai~>0, i =  1 ..... n, be real, positive numbers such that 

n n N N Y,i= 1 ai = 1, 5~i= 1 in ~i = In 2. Consider the family of c~ v + ~ 1 ~ + " ' "  -~ 

J N N independent normalized Gaussian random variables ek~,...,~? ~1 "''0~n 
j =  1,..., n, kj= 1,..., ~ ,  defined on a probability space ((2, J~, P). The 
energy levels are defined by 

j=l 
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and the partition function is given by 

Z( f l )=  2 "'" • exp f l x / N  x/-~je~,,...,~, 
k l  = 1 kn = 1 j = 1 

These models have been a useful guide to understanding the thermo- 
dynamic behavior of the mean-field Sherrington Kirkpatrick model/2~ 

Recently, Ruelle reformulated these models in terms of Poisson dis- 
tributions. (17) This approach is the starting point of ref. 14 and the present 
work. Some other rigorous results can be found in refs. 2, 7, and 8, 

In the following, we reformulate the GREM in terms of Poisson 
cascades. Before defining these cascades, we recall some standard notations 
and definitions about Poisson point processes. For a general review see 
refs. 13 and 16. 

Let X be a Borel space, Me(X) the family of point measures (i.e., sum 
of Dirac 6's) on (X, ~(X)) ,  and (~2, ~-, P) a probability space. 

Def in i t i on  1. A mapping N:f2~Me(X) such that, for every 
A eN(X), N(e))(A) is ~-measurable,  is called point process on X. The 
positive measure v on (X,N(X)), induced by N and given by v(A)- 
E(N(A)) = So N(o))(A)P(do9), is called the intensity of the process. 

If N(co)(A) is distributed according to a Poisson law with parameter 
E(N(A)), the process is called a Poisson point process. 

A simple construction shows that for every a-finite measure v over 
(X, ~(J()),  there always exists a concrete realization of a Poisson process, 
given by a sequence of random variables (xi)i~N on X, such that: 

(i) If A is a Borel subset of X, the number N(A) of points xieA 
follows a Poisson law with expectation v(A) [i.e., the measure v 
is the intensity of the process; if v(A)= o% this is interpreted as 
N(A) = oo a.s.]. 

(ii) If the subsets A1 ..... An are mutually disjoint, the random 
variables N(AI),..., N(An) are independent. 

Let now A, ,=(N*)  n be the set of sequences--of length n - -o f  strictly 
positive integers. This set is in one-to-one correspondence with a rooted 
tree with n generations that is saturated (i.e., with infinite number of 
branches at each vertex). So, any given sequence i e An can be viewed as a 
particular branch of length n. For  any i e An, i{-m, with m ~<n, denotes the 
restriction of the sequence to its m first elements. Choose now an infinite 
sequence e = (~1 ..... ~ ..... ) of real nonnegative numbers and construct the 
family v~, of measures on R | R + : 
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where 2 denotes the Lebesgue measure on R and #~, is the measure on 
(R +, ~ ( R + ) )  given by <17) 

#~,(l~dy)=o:iy (1+ ~h dy 

As was remarked in ref. 8, ~ corresponds to the ratio /3~,~/~, where 13,.~ 
denotes the inverse critical temperature of the rth hierarchy. 

A Poisson cascade is defined recursively as follows: 

Step 1. The first hierarchy is an infinity sequence of points 
{Ph ~ R |  i~ ~N*}  which are distributed according to v~. An equiva- 
lent way to consider this process is to define the random point measure 

ilEAl 

where 6p is the Dirac measure concentrated on p. Here ~ denotes the 
point measure of the Poisson point process of intensity v~l. 

Suppose now that this construction is carried up to the n - 1  
hierarchy. 

Step n. For every point Pi,,...,i,_~ ~ (R | R + ), define the nth hierarchy 
as the infinite sequence of points {P~,...,i, E R | R +, in ~ N*} which are dis- 
tributed according to the measure v=~ The corresponding point measure is 
given by 

i~An 

The point process defined by ~ 1  ....... is called an n-Poisson cascade. 
We stress the fact that JV~I ....... is not a product of independent Poisson 

point processes [-i.e., ./V~L,...,~. is not the point measure of a process with 
intensity (2 | #~,) | (2 | #~) | .-. (2 | #~,)3. 

D e f i n i t i o n  2. The GREM with n hierarchies is an n-Poisson 
cascade. 

In particular, the REM corresponds to a 1-Poisson cascade. Let us 
remark that in the above formulation we do not consider the states of the 
model in terms of probability measures. For this point the interested reader 
may consult ref. 17, where probability measures on the space of n 
hierarchies are constructed. 

As was noticed in ref. 14, in order to have a geometric insight into the 
phase transition in the case of the REM, it was necessary to enhance it by 
an infinite number of real random parameters x~. The intervals ]x~, xi + l~ [ 
were identified with the random points p~ on (R | R + ), where l, were the 
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Boltzmann factors exp(-f iEi) .  The same kind of enhancement will be 
necessary for the GREM. To each point pi~.. i=(x~...~,,/s~.../n) of 
(R | R + ), we naturally associate the open interval ]x,~... ~., x~ ..... + li~... ~, [, 
denoted for brievity ]p~...in [. 

The open hypercubes 

H !  '~  . = ] p , ,  [ x ] P i l f 2 [  x . . -  x ]Pi,...i~[ 11 . . .  I n 

are the elementary tiles for which it will be examined whether they cover 
the space R n a.s. 

As we will see, the covering or noncovering depends on the parameters 
~i, i.e., the temperature; we write explicitly the ei dependence for the union 

C(cq,..., c~,)= U H!"/ 
l l  " " " in  

i ~ A n  

The subset C(cq ..... %) c R n is called the covered set. 

We also need the following family of auxiliary subsets C*(a r )~  R, 
r - -  1,..., n: 

U 
i r o N *  

In the following section we study the covering of R n as a function of the 
parameters c~i. 

3. T H E  H I G H - T E M P E R A T U R E  R E G I O N  A N D  T H E  
R A N D O M  C O V E R I N G  OF R" 

As introduction to this section, we recall some notations and results 
relative to the covering of the real line by Poisson intervals. 

The covering condition can be found using different methods. Here, we 
use a recently developed approach related to the decomposition of positive 
measures on R into regular and singular parts. The main idea is to 
associate to the covering sets a positive martingale. This martingale can be 
considered as a sequence of random densities w.r.t, the Lebesgue measure, 
and one can investigate whether the weak limit coincides with a nontrivial 
measure. 

The advantage of the method is that it allows are to obtain nontrivial 
results in a particularly simple manner. Similar methods can be applied to 
one-dimensional percolation to obtain a much simpler proof of several 
results of ref. 1. On the other hand, and more surprising, the study of the 
singularities of such a random measure has similarities with the phase 
transition problems of spin systems with random interactions. <3) 
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Let us now present the main lines of this construction (see ref. 12 for 
details). 

For a locally compact space X, let M+(X)  be the cone of positive 
Radon measures on X. Let (f2, ~ ,  P) be a probability space. For an 
increasing sequence of sub-a-fields ( ~ ) , ~ c ~ ,  consider the functions 
(G,(x, co)),~ N such that: 

(i) For  every x e X ,  the sequence (G,(x, ')),,~N is a positive (i.e., 
>0),  o~-adapted martingale. 

(ii) For almost every coef2, the functions G,(. ,  co) are Borel. 

Let a be an element of M+(X). For a Borel set A EX, we consider the 
sequence of random measures 

( ,  

Gncr(A ) =- JA Gn(x, co) da(x) 

Under the condition that the expectation E(G,(x, co))eL ~, the above 
sequence converges a.s. to a random measure in the weak topology 
(Theorem 1 of ref. 12). 

We distinguish two interesting cases. The first one is that this limit is 
zero a.s. In this case the measure a is called Gn-singular. The second impor- 
tant .case is when E(limn~ooG, a( . )) = a( . ); the measure ~ is called 
G,-regular. The decomposition is given by the following result. 

T h e o r e m  3. (12) Given a positive martingale Gn and a positive 
Radon measure ~ on (X, ~(X)),  there is a unique decomposition of Gn into 
a sum of two positive martingales 

G, = G~, + G~ 

such that the measure ~ is G~-regular and G~,-singular. 

We are now going to translate the above construction in terms of a 
covering problem. 

Using the definitions of the previous section, we can ask whether 
C*(~r)----R or C*(~r)-r R almost surely. 

Let F be a compact set, F ~ R ,  and for an e > 0  consider the 
regularized measure #~ ( - )=#~r~> ,~ ( ' )  ad the Poisson point process 
associated to v~ = 2 |  We define the functions 

(x~C~(~r)) 
G~(x) = , , x ~ R 

P(x r c~ (~)) 

where C*(C~r) denotes the union of the covering intervals p~ with l~ > e. 
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One can easily see that the above sequence defines a positive mar- 
tingale of mean one, measurable w.r.t, the sequence of sub-~-fields 
generated by lir > ~" On the other hand, using the fact that Poisson point 
processes defined in disjoint domains are independent, the above mar- 
tingale can be viewed as a product of independent random weights. 

We have the following result. 

Propos i t ion  4. Almost surely: 

(i) For  :~r> 1 we have 

lim sup G~(x) = 0 and lira G~2(. ) = 0 
8 ~ 0  x ~ F  g ~ O  

In other words, the Lebesgue measure on R is G~-singular. 

(ii) For ~ ~< 1, lim~ ~ o G~2(-) # 0, the martingale ~ G~(x) dx e L2(t2) 
and the Lebesgue measure is G~-regular. 

The proof of this proposition can be found in ref. 14. Let us recall the 
main ideas. 

(i) Remark first that a straightforward calculation allows one to 
write the martingale G~(x) as 

ff 
x3 

Ge(x)=l(xr l d#~(l) 

On the other hand, one can see that if the compact set F c  C*(~r), 
then the martingale G~(x) indexed by the points of F should be degenerate, 
i.e., 

lim sup G~(x)=O a.s. 
e-',.O x e F  

As a consequence, l i m ~ o G ~ 2 ( F ) = 0  a.s. (2 denotes the Lebesgue 
measure). In fact, for c<r> 1, the above martingale fails to be square 
integrable. 

(ii) For c~r~< 1 the martingale G~2(F) converges in L2(/2) and the 
proposition follows using Doob's inequality for square-integrable mar- 
tingales. 

The following theorem is the main result of the present note. For 
clarity we assume that % < c~ 2 < -.- < an. 

T h e o r e m  5. We have: 

(i) F o r  1 < 0~1, C(0~ 1 . . . . .  O~n) = R "  a . s .  
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(ii) I f~l<c~2< " ' "  < ~ j < l < ~ j + l <  - - "  <a,, ,  for some j 6  {1 , . . . ,n -  1}, 
then any hyperplane of codimension j orthogonal to the first 1,..., j-axes 
passing through any point of the covered set C(~1 ..... c~j) is covered. All 
hyperplanes of codimension strictly smaller than j are uncovered; in 
particular, R n is not covered. 

(iii) For c~n~<l there is no hyperplane orthogonal to the axes 
covered. 

Proof. (i) One can easily prove that Vjs {1 ..... n -  1 }, the set C*(~r) 
covers the line iff the covered set C(el ..... ~n) = Rn a.s. Using this and the 
previous proposition, we have (i). 

(ii) Applying the same reasoning to the hyperplanes orthogonal to 
the 1,..., j-axes, (ii)follows. 

(iii) For  an~< 1, as the auxiliary family C*(ar) does not cover the 
line, we can easily conclude that there is no covered hyperplane. | 

As the parameters c~r equal tic.rift, we can interpret geometrically the 
phase transitions of the G R E M  as follows. The case (i) corresponds to the 
high-temperature behavior of the model; the first j phase transitions are 
related to (ii), and the low-temperature region is related to (iii), where the 
system is completely frozen. 

Let us remark that we cannot prove the above result if the distribution 
of the random covering intervals is not Poisson. An interesting direction is 
to apply the above setting to percolation problems. In this case we can use 
some recent results in order to have estimates on the lengths and the 
distribution of the number of covering sets. 
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